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The World Health Organisation reported in 2020 that six of the top 10 sources of death in low-income
countries are parasites. Parasites are microorganisms in a relationship with a larger organism, the
host. They acquire all benefits at the host’s expense. A disease develops if the parasitic infection
disrupts normal functioning of the host. This disruption can range from mild to severe, including
death. Humans and livestock continue to be challenged by established and emerging infectious
disease threats. Vaccination is the most efficient tool for preventing current and future threats.
Immunogenic proteins sourced from the disease-causing parasite are worthwhile vaccine components
(subunits) due to reliable safety and manufacturing capacity. Publications with ‘subunit vaccine’ in
their title have accumulated to thousands over the last three decades. However, there are possibly
thousands more reporting immunogenicity results without mentioning ‘subunit’ and/or ‘vaccine’.
The exact number is unclear given the non-standardised keywords in publications. The study aim is
to identify parasite proteins that induce a protective response in an animal model as reported in the
scientific literature within the last 30 years using machine learning and natural language processing.
Source code to fulfil this aim and the vaccine candidate list obtained is made available.

Microorganisms exhibit diverse complex relationships with larger forms of life that harbour them!. These sym-
biotic relationships encompass a spectrum governed by the benefits or detriments experienced by the microor-
ganism and host. At the extreme end of this spectrum is parasitism, in which the microorganism acquires all the
benefits at the host’s expense?. Parasitism is thought to be the most common mode of life on this planet®. Parasitic
relationships can vary between asymptomatic infections to one that kills the host*. Organisms known to display
parasitic relationships by living on or in a host include bacteria, viruses, fungi, protozoa, and helminths. In this
study, the term parasite refers only to protozoa, helminths and ectoparasites (parasites that exist on the external
surface of hosts); and the hosts of interest are humans and livestock.

Humans and livestock have evolved over millennia in a constant balance between their immune-system
defences and parasite virulence. Infection occurs when the balance shifts in favour of parasites as they multiply
within or on the host’s body. A disease develops if the infection disrupts the normal functioning of the host. This
disruption can range from mild to severe. Table 1 lists notable parasites of medical and veterinary importance
and their associated infection/disease. Due to progressively improving methods for treatment and control of
infectious diseases, human mortality and morbidity especially in the developing world has significantly declined
over the last 50 years®. Despite the global decline, the World Health Organisation (WHO) reported in December
2020 that six of the top 10 causes of death in low-income countries are infectious diseases. These countries are
mainly in tropical regions, with marginalized populations living in impoverished conditions®. Malaria tops the
list of parasitic induced diseases that cause the greatest burden. WHO in 2019, estimated that there were 229
million cases of malaria worldwide with 409,000 deaths. The list of burdensome parasites and diseases is not
static’. Rapid population growth in areas with weak health systems, urbanization, globalization, climate change,
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Parasite (Genus)* | Class® Phylum Disease® Priority®
Babesia Protozoa Apicomplexa Babesiosis

Cryptosporidium Protozoa Apicomplexa Cryptosporidiosis EwW
Cyclospora Protozoa Apicomplexa Cyclosporiasis F
Eimeria Protozoa Apicomplexa Coccidiosis

Neospora Protozoa Apicomplexa Neosporosis

Plasmodium Protozoa Apicomplexa Malaria

Sarcocystis Protozoa Apicomplexa Sarcocystosis F
Theileria Protozoa Apicomplexa Theileriosis

Toxoplasma Protozoa Apicomplexa Toxoplasmosis EW
Trypanosoma Protozoa Euglenozoa Trypanosomiasis, dourine, surra | EGW
Balantidium Protozoa Ciliophora Balantidiasis F
Ichthyophthirius Protozoa Ciliophora White spot

Entamoeba Protozoa Evosea Amebiasis EW
Leishmania Protozoa Euglenozoa Leishmaniasis GW
Dientamoeba Protozoa Metamonada Dientamoebaisis

Giardia Protozoa Metamonada Giardiasis EW
Histomonas Protozoa Metamonada Histomoniasis

Trichomonas Protozoa Metamonada Trichomoniasis

Ancylostoma Helminthic Nematoda Ancylostomiasis, hookworm G,W
Angiostrongylus Helminthic | Nematoda Angiostrongyliasis

Ascaris Helminthic | Nematoda Ascariasis EGW
Baylisascaris Helminthic | Nematoda Baylisascariasis

Cooperia Helminthic | Nematoda Infection only

Dirofilaria Helminthic | Nematoda Dirofilariasis/heartworm

Dracunculus Helminthic | Nematoda dracunculiasis, guinea worm GW
Enterobius Helminthic | Nematoda Enterobiasis

Gnathostoma Helminthic | Nematoda Gnathostomiasis

Haemonchus Helminthic | Nematoda Haemonchosis

Loa Helminthic | Nematoda Loiasis

Necator Helminthic Nematoda Necatoriasis, hookworm GW
Onchocerca Helminthic | Nematoda Onchocerciasis GW
Pseudoterranova Helminthic | Nematoda Anisakiasis F
Strongyloides Helminthic | Nematoda Strongyloidiasis

Teladorsagia Helminthic | Nematoda Teladorsagiosis

Toxocara Helminthic | Nematoda Toxocariasis

Trichinella Helminthic Nematoda Trichinellosis EW
Trichostrongylus Helminthic | Nematoda Trichostrongylosis

Trichuris Helminthic | Nematoda Trichuriasis EGW
Wuchereria Helminthic | Nematoda Filariasis GW
Clonorchis Helminthic | Platyhelminthes | Clonorchiasis w
Diphyllobothrium Helminthic | Platyhelminthes | Diphyllobothriasis F
Dipylidium Helminthic | Platyhelminthes | Infection only

Echinococcus Helminthic Platyhelminthes | Echinococcosis EW
Fasciola Helminthic Platyhelminthes | Fascioliasis EW
Fasciolopsis Helminthic | Platyhelminthes | Fasciolopsiasis

Hymenolepis Helminthic | Platyhelminthes | Hymenolepiasis

Moniezia Helminthic | Platyhelminthes | Infection only

Opisthorchis Helminthic | Platyhelminthes | Opisthorchiasis EwW
Paragonimus Helminthic | Platyhelminthes | Paragonimiasis EW
Schistosoma Helminthic Platyhelminthes | Schistosomiasis GW
Taenia Helminthic | Platyhelminthes | Cysticercosis EwW
Haemaphysalis Ectoparasite | Arthropoda Disease vector

Ixodes Ectoparasite | Arthropoda Paralysis

Lucilia Ectoparasite | Arthropoda Flystrike
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Table 1. Important parasites and their associated infectious disease. *Parasite = the genus of an organism
that lives on or in a host organism and typically at the detriment of the host (genus is a taxonomic name
defining a group of related living organisms made up of one or more species). ®Class = there are three main
classes of parasites that can cause disease in humans and livestock: (1) protozoa (microscopic single-celled
eukaryotes); (2) helminthic (multicellular organisms generally visible to the naked eye in their adult stages);
and (3) ectoparasite (ticks, fleas, lice, and mites that attach or burrow into the skin). “Disease = the name given
to an abnormal condition detrimentally affecting the structure or function of all or part of a host organism
due to parasite infection. ‘Infection only’ signifies multiplication of parasites occurs within or on a host’s
body but does not disrupt the normal functioning of the host. *Priority=FEG,W denotes priority diseases in
need of a vaccine as determined by: (F) Food and Agriculture Organization of the United Nations (FAO)—
Microbiological Risk Assessment series (https://www.who.int/publications/i/item/microbiological-risk-asses
sment-series); (G) Bill and Melinda Gates Foundation—Neglected Tropical Diseases (https://www.gatesfound
ation.org/our-work/programs/global-health/neglected-tropical-diseases) and Uniting to Combat Neglected
Tropical Diseases (https://unitingtocombatntds.org/ntds/); and (W) World Health Organisation (WHO) -
Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases
2021-2030 (https://www.who.int/publications/i/item/9789240010352). URLs last viewed September 2021.

civil conflict, antimicrobial resistance, and the changing nature of pathogen transmission between human and
animal populations® entails that the world will continue to be challenged by established, unknown, neglected
tropical diseases (NTDs), emerging, and re-emerging infectious disease threats. Infectious diseases also cost the
livestock industries billions of dollars annually, aside from substantial animal suffering”!°.

Vaccination is considered the most efficient tool for preventing current and future infectious disease threats!!.
The millions of lives saved due to vaccines against polio, smallpox, measles, diphtheria, tetanus, and rabies'? is
testament to their effectiveness and future potential. An effective vaccine induces a pathogen-specific immune
response providing long-lasting protection against infection'®. The most effective type of vaccine so far has been
live but attenuated whole-organisms with reduced virulence'>'*. However, live attenuated vaccines have the
potential to cause disease in immunosuppressed individuals; and/or are impracticable to grow in culture; and/
or contain components likely to trigger detrimental side-effects, allergenic and/or reactogenic responses'’; and/
or present the possibility of reversion to a virulent form'®.

Subunit vaccines contain only antigenic components sourced from the disease-causing organism'’, such as
specific proteins and/or polysaccharides. Although these non-living components on their own have generally
proven to be less immunogenic than attenuated organisms, their safety superiority and easier manufacturing
capacity without having to culture the pathogen!® makes them worthwhile endeavours for vaccine developers.
Moreover, subunit components supported by appropriate vectors and adjuvants have the potential to enhance
the efficacy’®. Subunit vaccines can be further categorized into protein-based (e.g., acellular pertussis, hepatitis
B, and human papillomavirus vaccines); polysaccharide (e.g., meningococcal vaccine); and conjugate (e.g. Hae-
mophilus influenza type b vaccine)’. In this study, the subunit components of interest are proteins that possess
immunogenic properties, which are expected to be proteins accessible to the immune system'?.

The traditional approach to identifying subunit vaccine components involves first cultivating and dissecting
the pathogen in the laboratory; followed by the identification of each isolated component. In 2000, reverse vac-
cinology was first proposed as a revolutionary idea to identify protein antigens in silico?. Previous studies detail
the in silico vaccine discovery approach inspired by reverse vaccinology for parasites®?, and for bacteria®. The
following summarises this approach. Protein sequences, at the heart of the in silico approach, have been shown
to encode signals that provide informative characteristics about the source protein, such as its destined subcel-
lular location, the presence of transmembrane domains and epitopes, or whether it is anchored to a membrane.
As to date however, there has been no detection of a sequence-derived characteristic of a parasitic protein indi-
cating protective immunity in a host. Some predicted characteristics such as epitopes suggest immunogenicity,
although direct methods of predicting epitopes recognised by T-cells and B-cells remain problematic*** (indirect
prediction methods focusing on peptide binding to major histocompatibility complex (MHC) molecules have
proved more computationally practicable but requires training data containing a sufficiently large set of MHC-
peptide binding affinities that are experimentally validated and specific to the host of the target pathogen®®).
The in silico strategy, as a compromise, is based on the premise that immunogenic proteins will have a different
profile of characteristics to non-immunogenic proteins, and immunogenic proteins are more likely to provide
protective immunity. This profile difference is not distinguishable to an observer and requires a trained binary
classifier implemented via supervised machine learning (ML). Training data are the initial information used to
teach supervised ML algorithms in the process of developing a model, from which the model creates and refines
its approaches required for classification. Consequently, quantity and quality of training data are paramount to
the ML algorithm’s performance when given an unseen profile to classify. Ideal training data for the in silico
strategy would comprise two labelled datasets of characteristic profiles: one set derived from proteins shown to
induce a protective immune response in a host, and an opposing set derived from known non-immunogenic
proteins. This ideal is currently not readily forthcoming for parasites and raises a fundamental cyclic conundrum
that currently limits the in silico vaccine discovery potential. That is, a sufficient number of proteins verified to
provide protective immunity are required in the training data to predict proteins likely to provide protection.
The only known repository that contains protective antigens associated with parasites is a web database created
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in 2011 called Protegen?. It currently contains 167 unique parasitic antigens manually curated from selected
peer-reviewed publications.

The PubMed database maintained by the National Center for Biotechnology Information (NCBI) at the U.S.
National Library of Medicine (NLM) indicates that the first published investigation of a subunit vaccine?® was in
1966. Over the following decades an increasing trickle of publications has accumulated to 1112 with ‘subunit vac-
cin€’ or ‘subunit vaccines’ in their title. It is difficult to ascertain from PubMed search terms and keywords, how
many of these publications are specific to ‘protein-based’ subunit vaccines. Furthermore, it is estimated here that
there are possibly hundreds of published studies over the past several decades without ‘subunit vaccine’ in their
title, but still report immunogenicity results of parasitic proteins. The exact number is unclear, however, given
the non-standardised keywords in publications. Despite this uncertainty in exact numbers, PubMed searches
suggest there is a potential pool of immunogenic proteins that could fulfil the elusive training data requirement
for the in silico vaccine discovery approach.

The aim of the current study is to ‘automatically’ identify all parasite proteins that induce a protective response
in an animal model as reported in the scientific literature within the last 30 years. To achieve this aim, we have
developed a computational pipeline that first classifies published abstracts using ML, and then extracts protein
and/or gene names from the classified ‘abstracts of interest’ using natural language processing (NLP). Source
code for the pipeline is provided via GitHub (a source code repository hosting service). The pipeline extracted
606 parasitic proteins from four phyla (Apicomplexa, Euglenozoa, Nematoda, and Platyhelminthes). All these
proteins are reported in highly cited publications; and 485 of the 606 have evidence supporting their accessibility
to the immune system. We judge them to have vaccine candidacy merit, and therefore relevant for ML training
data and/or further investigation. Furthermore, protein characteristics of the candidates were extracted from
existing resources or predicted from their sequences. A comparative analysis of these characteristics from differ-
ent phyla is presented via tables and graphs. Unresolved limitations remain with the pipeline and in particular, it
has a programmed inclination to identify more popular well-reported candidates to reduce the numbers of false
positives. However, we believe this is the first reported attempt to ‘automatically’ generate a vaccine candidacy
list from the scientific literature as a starting point for investigation, and is a superior time-saving alternative to
a manual gathering process.

Results

Figure 1 shows a schematic of the entire pipeline that is designed to take abstracts as input and provide as output,
a list of vaccine candidates. The pipeline consists of different stages and the presented results are in accordance
to the stage’s approach used to obtain them: (1) rule-based abstract classification; (2) ML abstract classification,
(3) rule-based and NLP protein name extraction, and (4) protein name to sequence association.

Classification of abstracts using a rule-based approach. All publications over the last 30 years
that contained either the word ‘parasite, ‘vaccine, ‘vaccinated, or ‘vaccination’ in its title or abstract text were
downloaded from PubMed—332,627 publications met this selection criteria. Each title and associated abstract
was assessed to determine whether it contained matching words in keyword files (see Material and methods—
Abstract classification using a rule-based approach). For instance, an abstract was classified as one of importance
(a positive) if it contained defining words for the following: a parasite species, protective immunity, an animal
model, a parasitic disease, and a gene or protein name associated with parasites. Supplementary Table S1 (an
Excel file, sheet [Rule_based]) lists 2744 PubMed IDs and their relative keyword counts that were classified as
positives e.g., the ‘title+abstract’ for PubMed ID ‘31815006 contains 16 ‘protective immunity’ keywords, one
animal model, one parasite species, one parasitic disease, and one protein name (surface antigen protein). Sheet
[Identified_protein_names] lists 1752 unique protein names identified within these abstracts along with the
number of publications containing the name. Abstracts with the greatest number of protective immunity key-
words are considered here as the most likely to contain a vaccine candidate. Similarly, protein names associated
with a greater number of publications are considered more likely vaccine candidates than those with fewer
publications. For example, ‘Circumsporozoite protein’ is mentioned in 319 publications, whereas ‘1-cys perox-
iredoxin’ only one (718 of the 1752 unique protein names have only one publication).

Two sets of 100 abstracts were randomly selected from the 2744 classified abstracts. One set contained only
abstracts with more than one protective immunity keyword (2308 met this criteria); whilst the other set contained
only one keyword, excluding those with ‘vaccine’ or ‘vaccination’ (381 met this criteria). These abstracts were
manually verified. Supplementary Table S1 (sheets [Verified abstracts>1] and [Verified abstracts = 1]) shows
PubMed IDs and their keyword counts for the two sets. An additional column indicates a manually assessed ‘yes’
or no’ as to whether the abstract is truly one of interest and has a relevant protein name. This manual assess-
ment suggests the rule-based approach has a 42.5% accuracy of selecting an ‘abstract of interest’ but increases to
85% when the classifying threshold is greater than one protective immunity keyword. This accuracy, however,
reduces to 80% in its capacity to fully identify the relevant protein name. These manually assessed abstracts are
referred to henceforth as the “Verified positive’ and “Verified negative’ abstracts, and used later to evaluate the
ML algorithm’s performance.

As a further independent test, the title and abstract were taken from 50 publications known to contain vac-
cine candidates (see Material and methods-Evidence abstracts). The rule-based criteria were applied to the 50
‘title+abstracts’ (referred to henceforth as the ‘Evidence’ abstracts). The results are shown in Supplementary
Table S1—sheet [Rule_based_evidence]. Blank cells or text in bold indicates that no keyword was found for
specific selection criteria e.g., the ‘title+abstract’ for PubMed ID 24349483’ does not contain an animal model.
Using the stringent rule-based selection criteria, only 58% would be classified abstracts of interest. This is because
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Figure 1. A schematic of the pipeline processes that takes abstracts as input and provides vaccine candidates
as output. PubMed is a database maintained by the National Center for Biotechnology Information (NCBI)
and contains over 30 million abstracts on life sciences and biomedical topics. The advanced search query was
parasite, vaccine, vaccinated, OR vaccination in Title or Abstract text AND publication year greater or equal

to 1991 and less than 2022. Keywords for the rule-based abstract classification were related to protective
immunity, animal models, parasite species, and parasitic diseases. Note keywords were searched and counted
in both title and abstract. The term ‘abstract of interest’ refers to abstracts that potentially contain a protein
name of a vaccine candidate. Database searching involves checking for a match of an extracted protein name
in an in-house protein and gene database compiled from The Universal Protein Resource (UniProt) and NCBI.
Training data consisted of abstracts converted to a vectorised format (i.e., a numerical representation) using
the text vectorization technique, Bag of Words (BoW). NLP is an acronym for natural language processing.
Named entity recognition (NER) is a sub-task of NLP and was used to classify named entities in abstracts into
a pre-defined category of protein name. CD-HIT (cluster database at high identity with tolerance) was used to
cluster 3731 sequences associated with 403 unique protein names into 1099 clusters, in which each member had
a sequence similarity identity greater than 90%. A representative sequence is the longest sequence in a cluster.
Exposed candidates are proteins naturally exposed to the immune system, whereas non-exposed are normally
located in the pathogen’s interior.
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Figure 2. A word cloud showing the 50 most frequent words in the positives training data applied in the
classification of abstracts using machine learning. Note that stop words e.g., “a”, “the’, “is”, “are” etc. were
removed and a standard Porter Stemming algorithm applied to detect and combine similar words e.g., words
such as responses and response or significant and significantly are combined (the most frequent of the variants

is chosen to represent them). TagCrowd (https://tagcrowd.com/) was used to generate the word cloud.

most of the abstracts contain no ‘disease’ keyword. Ignoring the disease criterion, the relevant protein name is
correctly identified in 82% of the abstracts.

Classification of abstracts using machine learning. An in-house ML pipeline was created that clas-
sifies an unseen abstract as either one of interest i.e., one potentially containing a vaccine candidate (a posi-
tive) or one that is not of interest (a negative). Materials and methods—Abstract classification using machine
learning—describes the pipeline. The pipeline accuracy as determined from tenfold cross-validation of the ML
training data (1556 positives and 1556 negatives) was 99.6% (see Supplementary Table S2 [SVM performance
measures] for other measures used to evaluate the pipeline’s predictive performance). This high accuracy comes
with a caveat. The positive or negative categorisation of training data abstracts was determined by the rule-based
approach. Given the previous verification results, the expectation is that an unknown 15% of this categorisation
is potentially incorrect. Figure 2 shows a word cloud of the 50 most frequent words in the positives training data.
Supplementary Table S2 (sheets [Positives] and [Negatives]) shows the cross-validation-derived probability for
each training abstract that it has been correctly classified e.g., 4 out of 1556 positives have a less than 50% prob-
ability that the classification is correct.

The in-house ML pipeline was applied to the Evidence and Verified abstracts, which are independent of
the training abstracts. Supplementary Table S2 shows the results. Only one Evidence abstract had a probability
less than 0.5, and therefore 49/50 (98%) were correctly classified as abstracts of interest—see sheet [Evidence
abstracts]. The results from the Verified abstracts indicate the ML pipeline accuracy in correctly classifying an
abstract of interest is 83% with a sensitivity and specificity of 98.8% and 71.3%, respectively. This means the
classifier correctly predicts a positive more often than a negative e.g., with respect to the Verified abstracts, one
‘abstract of interest’ would be incorrectly rejected and 33 abstracts that are not of interest would be incorrectly
accepted for the next stage of protein/gene name extraction—see sheets [Verified positive abstracts] and [Veri-
fied negative abstracts].

The ‘title+abstract’ from all 332,627 downloaded publications were input into the ML pipeline. Approxi-
mately 22% of these input abstracts had an equal or greater than 50% probability of being correctly classified as
an ‘abstract of interest —16.8% with probability greater than 75%, and 12.5% greater than 90% (see sheet [All
abstracts> =0.5]). Abstracts of interest have steadily increased from 420 publications in 1991to 4619 in 2020
(except years 2002 and 2016 showed declines from the year before). Supplementary Data S1 displays a graph
of these publication numbers. Figures 3 and 4 show the frequency of words related to animal models, parasitic
species, and parasitic diseases within classified abstracts over the last three decades.

Protein name extraction using rules and natural language processing. SpaCy is an open-source
library for advanced NLP in Python (https://spacy.io/—last viewed September 2021). It provides named entity
recognition (NER) functionality as one of its options. NER, a sub-task of information extraction, finds and
classifies named entities in text into pre-defined categories such as names of persons, organizations, and coun-
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Figure 3. A bar chart showing frequency of disease words in classified abstracts over three decades from 1991
to 2021. The classified abstracts are ‘title+abstract’ text output from the machine learning abstract classification
stage of the current study i.e., given an initial input of 332,627 ‘title+abstract’ texts downloaded from PubMed,
64,986 had a classification probability greater than or equal to 50% and were deemed ‘abstracts of interest’ (e.g.;
an abstract that potentially contains a protein name of a vaccine candidate). Each word or a series of words
associated with a parasitic disease were counted in the abstracts of interest e.g., the word ‘malaria’ appears

2162 times and ‘toxocariasis’ 13 times in the abstracts. The bar chart shows that each decade has a greater
disease frequency than the decade before; and the frequency has more than doubled in the last 10 years (except
for schistosomiasis and cysticercosis). Note that for brevity, counts of words related to the same or similar
diseases were combined e.g., the diseases Chagas disease, American trypanosomiasis, African trypanosomiasis,
and sleeping sickness are all caused by trypanosomes. The word counts associated with these diseases were
combined and presented under trypanosomiasis.
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Figure 4. A bar chart showing frequency of ‘animal model’ words in classified abstracts over three decades
from 1991 to 2021. The classified abstracts are ‘title+abstract’ text output from the machine learning abstract
classification stage of the current study i.e., given an initial input of 332,627 ‘title+abstract” texts downloaded
from PubMed, 64,986 had a classification probability greater than or equal to 50% and were deemed ‘abstracts
of interest” (e.g.; an abstract that potentially contains a protein name of a vaccine candidate). Each word or a
series of words describing an animal were counted in the abstracts of interest e.g., the word ‘mice’ appears 30,749
times and ‘goats’ 545 times in the abstracts. Note that the automated approach does not distinguish whether the
animal words relate to a model for candidate verification or reference to another context such as an animal host.
The bar chart shows that each decade has a greater frequency for each ‘animal model’ word than the decade
before. The rate of increase in frequency has doubled in the last 10 years for the following (listed in descending
rates): pigs, chickens, cattle, birds, goats, dogs, and sheep. Conversely, the rate of increase has slowed for the
following (listed in ascending rates): primates, rats, rabbits, mice, and guinea pigs. Note that for brevity, counts
of words related to the same or similar animal model were combined e.g., the ‘cattle’ animal model comprises
word counts for cow, cows, calf, calves, and cattle.
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tries. In this study, our entities of interest are protein and gene names. We investigated three types of NER
trained models: SpaCy default models (https://spacy.io/models), scispaCy, and a SpaCy custom model trained
for this study (see later ‘Protein name detection using natural language processing’). scispaCy is a Python pack-
age containing spaCy models trained for processing biomedical, scientific or clinical text”. As an illustration,
Supplementary Data S2 contains two example abstracts that were processed with various spaCy, scispaCy, and
custom NER models, with the aim to identify protein and genes, either via a symbol or name e.g., identify EG95
in Example #1, and TgPI-1, ROP2, GRA4, and serine protease inhibitor-1 in Example #2 (expected entities are
highlighted in bold). Following the examples are the identified entities. All expected entities were identified by
the evaluated scispaCy NER models. However, from this study’s perspective, there were numerous false positive
entities related to scientific terminology, which was not a surprise considering scispaCy is designed to identify
biomedical and scientific entities. The custom NER model, trained specifically to extract gene and protein name
entities, successfully identified the expected names with only one false positive.

The Evidence and the Verified abstracts were processed with the custom NER model and a rule-based
approach (see later ‘Protein name extraction using a rule-based approach’). An important point is that entities
identified by both approaches are checked for a match in an in-house compiled protein and gene database (see
Materials and methods). The accuracies in identifying ‘database verified’ protein or gene names were 88% and
91% (custom NER model), and 95% and 97% (rule-based) given Evidence and Verified abstracts, respectively.
The rule-based accuracy is higher entirely because of the database verification e.g., a greater percentage of the
entities checked for database verification are not valid protein names, whereas a substantially smaller percentage
are invalid for the custom NER model. This equates to the rule-based approach generating more false positives
and less false negatives; and conversely, the custom NER model generating less false positives and more false
negatives. Using a consensus of the ‘rule-based+custom NER model entities, the accuracies reduce to 86% and
90% given Evidence and Verified abstracts, respectively.

Combined abstract classification and subsequent protein extraction. Supplementary Table S3
(sheet [Candidates per PubID]) lists 1776 PubMed IDs and their relative keyword counts that were classified
as abstracts containing protein names considered worthy vaccine candidates for further investigation. This
list was achieved by first performing a ML classification of ‘title+abstract’ from 332,627 publications to obtain
‘abstracts of interest, and then a protein name extraction using a consensus of the ‘rule-based+custom NER
model’ approaches. An important point is that different selection criteria and thresholds can be applied that
greatly dictate the number and quality of proteins in the output list. Namely: start and end year for publications;
a threshold applied to ‘abstract of interest’ probability i.e., the output probability from the ML abstract classifica-
tion; a threshold applied to the number of publications containing a candidate protein; and a threshold applied
to the number of animal models referenced in the ‘abstract of interest. Supplementary Data S3 demonstrates
the impact of different selection criteria and thresholds. The main impact is that the more stringent the selec-
tion criteria, the more false negatives and potentially less false positives. The criteria used to obtain the 1776
proteins were Probability threshold > =0.99, Publication threshold > =3, Animal model threshold > =1, Year
Start> =1991; Year End < =2021 (Discussion expands on the rationale for the thresholds chosen).

The protein names extracted from the 1776 classified abstracts were compiled into one list of 403 unique
names (see Supplementary Table S3—sheet [Candidates]). This list also includes the number of publications
that mention the unique ‘protein name’ given the 332,627 abstracts. Note that the uniqueness of the name is
with reference to the usage in the abstracts e.g., Apcial membrane antigen I, Apical membrane antigen, apical
membrane antigen 1, Apical membrane antigen 1, and Apical membrane antigen-1 are the exact names extracted
from ‘abstracts of interest. It is likely these names all represent the same protein, however, they are valid names
with unique records in The Universal Protein Resource (UniProt) database® e.g., the assumed misspelt ‘Apcial
membrane antigen I’ has the UniProt ID Q26162. Several names were incorrectly extracted from abstracts due
to the following two reasons: (1) an incorrect link of a ‘gene name from an abstract’ to a ‘protein in a database’
e.g., some abstracts contain the words ‘circumsporozoite (CS) protein’ CS is the gene name for both Chorismate
synthase and Citrate synthase. Protein names extracted from such abstracts included Circumsporozoite protein,
Chorismate synthase, and Citrate synthase; (2) an incorrect name extraction from a larger name e.g., for abstracts
containing ‘Calcium-dependent protein kinase, ‘Apical membrane antigen 1; and ‘heat shock protein 70’, the
names ‘protein kinase, ‘Apical membrane antigen, and ‘heat shock protein’ were also extracted because they are
valid names associated with unique Uniprot IDs.

Protein name to sequence association. The study aim was to not only obtain a list of vaccine candidate
names but to associate the name to a relevant protein sequence. Two challenges had to be overcome to fulfil
this aim. First, the inconsistency in protein names as previously highlighted with the ‘Apical membrane antigen’
example; and second, the name association with more than one sequence e.g., ‘Circumsporozoite protein’ is one
of the 403 protein names extracted. In the UniProtKB database (release 2021_03), there are 3281 (unreviewed
i.e., computationally analysed records) and 26 (reviewed i.e., manually annotated records) proteins with the
name ‘Circumsporozoite protein. Given only abstracts, it was not possible to determine which of these proteins
was used in the related study’s vaccine candidacy evaluation. We did, nonetheless, narrow down the number of
protein possibilities by using only proteins from the species specified in the abstract e.g., Plasmodium falciparum
has 1098 proteins named ‘Circumsporozoite protein. Despite using only species-related protein names, 29,648
sequences could be associated with the 403 protein names.

The following approach was implemented to overcome the two challenges. First, all ‘partially’ sequenced
proteins (i.e., proteins annotated as being a fragment) were removed leaving 3731 sequences. Second, a CD-
HIT (cluster database at high identity with tolerance)*! analysis was performed on the 3731 sequences. CD-HIT
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Figure 5. A word cloud showing the 15 most reported protein names per organism in the last 30 years of
published research for four important parasite species. The size of the name is proportional to the number of
publications reporting the protein. These protein names were ‘automatically’ extracted by the current study’s
computational pipeline, which is designed to identify, from publication abstracts, parasite proteins that induce
a protective response in an animal model. The presented names are from the top four species based on the total
number of proteins identified: (A) Plasmodium Falciparum, (B) Toxoplasma gondii, (C) Babesia bovis, and (D)
Schistosoma japonicum. Wordclouds.com (https://classic.wordclouds.com/) was used to generate the word
cloud.

provides functionality to cluster protein sequences that meet a sequence similarity identity threshold. The thresh-
old chosen here was 90%. The CD-HIT analysis created 1099 clusters (see Supplementary Table S4—sheet [Clus-
ters]). As an example, cluster #19 has 73 sequences all with the same name “Transmission-blocking target antigen
P230’ These sequences formed one cluster because they meet a sequence similarity identity greater than 90%. The
longest sequence from each cluster was chosen as the cluster’s ‘representative’ e.g., UniProt ID HIAAD5_PLAVI
is the representative sequence for cluster #19. All representative sequences are denoted by a *’ in the Identity
column. Note that the identity threshold is another variable that can greatly impact results.

Supplementary Table S4 (sheet [Representative Na